首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35572篇
  免费   2565篇
  国内免费   2056篇
化学   20782篇
晶体学   232篇
力学   1814篇
综合类   650篇
数学   7083篇
物理学   9632篇
  2023年   237篇
  2022年   439篇
  2021年   1319篇
  2020年   767篇
  2019年   856篇
  2018年   618篇
  2017年   664篇
  2016年   885篇
  2015年   932篇
  2014年   1199篇
  2013年   2132篇
  2012年   1429篇
  2011年   1638篇
  2010年   1526篇
  2009年   1979篇
  2008年   2050篇
  2007年   2242篇
  2006年   1675篇
  2005年   1062篇
  2004年   1022篇
  2003年   1065篇
  2002年   3541篇
  2001年   1264篇
  2000年   690篇
  1999年   549篇
  1998年   546篇
  1997年   406篇
  1996年   503篇
  1995年   422篇
  1994年   425篇
  1993年   485篇
  1992年   475篇
  1991年   321篇
  1990年   270篇
  1989年   221篇
  1988年   244篇
  1987年   209篇
  1986年   220篇
  1985年   321篇
  1984年   234篇
  1983年   145篇
  1982年   294篇
  1981年   470篇
  1980年   431篇
  1979年   468篇
  1978年   371篇
  1977年   278篇
  1976年   238篇
  1974年   74篇
  1973年   151篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
According to the one-dimensional quantum state distribution, carrier scattering, and fixed range hopping model, the structural stability and electron transport properties of N-, P-, and As-doped SiC nanowires(N-SiCNWs, P-SiCNWs, and As-SiCNWs) are simulated by using the first principles calculations. The results show that the lattice structure of NSiCNWs is the most stable in the lattice structures of the above three kinds of doped SiCNWs. At room temperature,for unpassivated SiCNWs, the doping effect of P and As are better than that of N. After passivation, the conductivities of all doped SiCNWs increase by approximately two orders of magnitude. The N-SiCNW has the lowest conductivity. In addition, the N-, P-, As-doped SiCNWs before and after passivation have the same conductivity–temperature characteristics,that is, above room temperature, the conductivity values of the doped SiCNWs all increase with temperature increasing.These results contribute to the electronic application of nanodevices.  相似文献   
52.
53.
High-energy assisted extraction techniques, like ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), are widely applied over the last years for the recovery of bioactive compounds such as carotenoids, antioxidants and phenols from foods, animals and herbal natural sources. Especially for the case of xanthophylls, the main carotenoid group of crustaceans, they can be extracted in a rapid and quantitative way with the use of UAE and MAE.  相似文献   
54.
Theoretical investigations on the insertion reaction mechanisms of three- membered-ring silylenoid H2 Si Li F with GeH 3R(R = F, OH, NH2) have been systematically carried out by combined density functional theory(DFT) and ab initio quantum chemical calculations. The geometries of all stationary points for these reactions were optimized using the B3 LYP method and then the QCISD method was used to calculate the single-point energies. The calculated results indicate that, there are one precursor complex(Q), one transition state(TS), and one intermediate(IM) which connect the reactants and the products along the potential energy surface. The insertion reactions of three-membered-ring silylenoid with Ge H3 R proceed in a concerted manner, forming H2RSi-Ge H3 and Li F. The calculated potential energy barriers of the three reactions are 29.17, 30.90, and 54.07 k J/mol, and the reaction energies for the three reactions are –127.05, –116.91, and –103.31 k J/mol, respectively. The insertion reactions in solvents are similar to those in vacuum. Under the same situation, the insertion reactions should occur easily in the following order: GeH 3-F GeH 3-OH GeH 3-NH2. The elucidations of the mechanism of these insertion reactions provided a new mode of silicon-germanium bond formation.  相似文献   
55.
Thin silica gel layers impregnated with optically pure l ‐glutamic acid were used for direct resolution of enantiomers of (±)‐isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l ‐alanine, l ‐valine and S‐benzyl‐l ‐cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed‐phase high‐performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin‐layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)‐isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)‐isoxsuprine. The elution order in the experimental study of RP‐TLC and RP‐HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1–0.09 µg/mL in TLC while it was in the range of 22–23 pg/mL in HPLC and 11–13 ng/mL in RP‐TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
56.
57.
Doxorubicin (DOX), a recognized anticancer drug, forms stable associations with carbon nanotubes (CNTs). CNTs when properly functionalized have the ability to anchor directly in cancerous tumors where the release of the drug occurs thanks to the tumor slightly acidic pH. Herein, we study the armchair and zigzag CNTs with Stone–Wales (SW) defects to rank their ability to encapsulate DOX by determining the DOX-CNT binding free energies using the MM/PBSA and MM/GBSA methods implemented in AMBER16. We investigate also the chiral CNTs with haeckelite defects. Each haeckelite defect consists of a pair of square and octagonal rings. The armchair and zigzag CNT with SW defects and chiral nanotubes with haeckelite defects predict DOX-CNT interactions that depend on the length of the nanotube, the number of present defects and nitrogen doping. Chiral nanotubes having two haeckelite defects reveal a clear dependence on the nitrogen content with DOX-CNT interaction forces decreasing in the order 0N > 4N > 8N. These results contribute to a further understanding of drug-nanotube interactions and to the design of new drug delivery systems based on CNTs.  相似文献   
58.
59.
Background: Carnosine is a dipeptide molecule (β-alanyl-l-histidine) with anti-inflammatory, antioxidant, anti-glycation, and chelating properties. It is used in exercise physiology as a food supplement to increase performance; however, in vitro evidence suggests that carnosine may exhibit anti-cancer properties. Methods: In this study, we investigated the effect of carnosine on breast, ovarian, colon, and leukemic cancer cell proliferation. We further examined U937 promonocytic, human myeloid leukemia cell phenotype, gene expression, and cytokine secretion to determine if these are linked to carnosine’s anti-proliferative properties. Results: Carnosine (1) inhibits breast, ovarian, colon, and leukemic cancer cell proliferation; (2) upregulates expression of pro-inflammatory molecules; (3) modulates cytokine secretion; and (4) alters U937 differentiation and phenotype. Conclusion: These effects may have implications for a role for carnosine in anti-cancer therapy.  相似文献   
60.
This study compares the physicochemical properties of six electrolytes comprising of three salts: LiFTFSI, NaFTFSI and KFTFSI in two solvent mixtures, the binary (3EC/7EMC) and the ternary (EC/PC/3DMC). The transport properties (conductivity, viscosity) as a function of temperature and concentration were modeled using the extended Jones-Dole-Kaminsky equation, the Arrhenius model, and the Eyring theory of transition state for activated complexes. Results are discussed in terms of ionicity, solvation shell, and cross-interactions between electrolyte components. The application of the six formulated electrolytes in symmetrical activated carbon (AC)//AC supercapacitors (SCs) was characterized by cyclic voltammetry (CV), galvanostatic cycling with potential limitation (GCPL), electrochemical impedance spectroscopy (EIS) and accelerated aging. Results revealed that the geometrical flexibility of the FTFSI anion allows it to access and diffuse easily in AC whereas its counter ions (Li+, Na+ or K+) can remain trapped in porosity. However, this drawback was partially resolved by mixing LiFTFSI and KFTFSI salts in the electrolyte.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号